

UNIDAD 4: Archivos en Visual Basic

CONTENIDOS

1. Conocer los tipos de archivos utilizados en Visual Basic;

2. Conocer las operaciones sobre archivos: apertura, lectura/escritura,
cierre;

3. Variables definidas por el usuario para crear backup de tablas de una
base de datos relacional. Recuperación de datos a través de archivos
planos;

4. El tratamiento de Color e imágenes en Visual Basic. Representación
hexadecimal de los colores, acceso a los colores del sistema, función
RGB, paleta de colores, formatos gráficos, controles gráficos: Image,
PictureBox, ImageList.

1

1

2

3

ACTIVIDADES
Unidad 4 Tareas

1/2
Lectura, trabajos, prácticas propuestas en el Website de la Materia,
Sección Actividades.

(*): Los trabajos se encuentran almacenados en el CD en formato PDF y en el Website de la
materia.

(**): Libro impreso.

BIBLIOGRAFÍA para el Alumno

1. Contenidos Unidad 4

2. JALÓN, RODRÍGUEZ, BASÁLEZ, Aprenda Visual Basic 6.0 como si
estuviera en primero (Universidad de Navarra)

3. RAMÍREZ R., José Felipe, aprenda VISUAL BASIC practicando (PrenticeA
Hall, México, 1ª Edición, 2001)

(*)

(**)

 Unidad 4 Página 1 / 4

CONTENIDOS

1. Conocer los tipos de archivos utilizados en Visual Basic.

Hace muchos años atrás las Bases de Datos no eran tan populares porque utilizaban lo que se conoce
como archivos secuenciales o también llamados archivos planos. Este tipo de archivos están
organizados de forma tal que la separación entre campos utiliza delimitadores (caracteres especiales)
Están organizados de forma tal que la separación entre campos utiliza delimitadores (caracteres
especiales) o bien considerando posiciones fijas, y en este caso podemos hablar de un registro.

Este tipo de archivos hoy en día se siguen utilizando debido a la transferencia de datos. En muchos
sistemas relacionales de hoy en día se puede cargar una base datos o actualizar la misma haciendo uso
de scripts que justamente se basan en el formato texto. Es una forma bastante veloz, que por ejemplo
utiliza DB2 para realizar cargas y actualizaciones masivas.

Existen en Visual Basic 6.0 dos tipos de archivos:

• Ficheros ASCII o de texto: Están codificados en código ASCII y pueden leerse con cualquier editor
de texto. Generalmente tienen extensión *.txt o *.bat. También ficheros con extensión *.c, *.cpp
o *.java que son los fuentes de programas escritos en C, C++ o Java. En las bases de datos son
utilizados, reiteramos para recuperar o realizar cargas masivas de datos.

• Ficheros binarios: son ficheros imagen de los datos o de programas tal como están en la
memoria. No son legibles directamente. La ventaja es que no hay que pasarlos de código ASCII a
lenguaje entendible por el ordenador y por ende se ahorra tiempo y espacio ya que ocupan
menos lugar que los ASCII. Son comúnmente utilizadas las extensiones *.dat y *.bin.

Otro tema importante es el tipo de acceso a los archivos. Fundamentalmente existen tres formas:

• Acceso secuencial: se leen y escriben los datos en forma secuencial, un registro después de otro.
Si se quiere acceder a un dato que está hacia la mitad de un fichero, habrá que leer primero los
datos. Los ficheros de texto tienen acceso secuencial.

• Acceso aleatorio (random): posibilitan acceso directo a un dato sin tener que pasar por todos los
anteriores y además el acceso es sin seguir un orden específico. La limitación está dada en que
los datos están almacenados en unidades de información o bloques conocidos como registros.
Esto hace a la organización del archivo y todos los registros deben tener el mismo tamaño. Estos
ficheros son binarios.

• Acceso binario: similares a los anteriores pero el acceso no se ha por registros sino por bytes.

Sólo abarcaremos las operaciones de apertura, escritura/lectura y cierre sobre archivos planos o de texto
debido a la utilidad que tiene para cargar y recuperar datos masivos de Bases de Datos. Los Archivos de Acceso
Aleatorio excede el nivel del curso y por cierto, las Bases de Datos y las operaciones básicas sobre ellas que hemos

visto en la Unidad 2 justamente un Sistema de Bases de Datos es de por sí aleatorio.

2. Conocer las operaciones sobre archivos: apertura, lectura/escritura, cierre.

Para escribir o leer en un archivo primero hay que abrirlo y luego de utilizarlo hay que cerrarlo. Por ello
veremos la sintaxis correspondiente de las operaciones fundamentales sobre archivos.

• Open

Sintaxis: Open Archivo For [Append|Input|Output] As #NumeroCanal

Archivo es el nombre del archivo y Numero de canal es el canal de comunicaciones o puerto
asignado en forma exclusiva para el archivo, por lo tanto, cada archivo debe tener un número de
canal distinto.

Las opciones de modo de apertura: Append, Input y Output nos permiten escribir al final
del fichero (Append significa agregar), leer y escribir al comienzo de un fichero existente.

 Unidad 4 Página 2 / 4

La lógica nos indica qué sucederá en estos casos:

o Si se intenta leer en una archivo que no existe (Input) tendremos un error como
resultado, porque el archivo no existe;

o Si se intenta abrir un archivo que existe (tiene contenido) con Output se empezará a
escribir al comienzo y se borrará el contenido anterior;

o Si se intenta abrir un archivo que no existe con Output, se creará el archivo sin contenido
(longitud de 0 bytes);

o Si se intenta abrir un archivo que existe con Append se respetará el contenido anterior
del archivo;

o Si se intenta abrir un archivo que no existe con Append se creará el archivo y como no
tiene contenido (longitud de 0 bytes) comenzará a escribir desde el principio del archivo.

Como dos archivos no pueden tener el mismo puerto se puede utilizar la palabra reservada
FreeFile para obtener el primer número de canal disponible del sistema.

En la sección Actividades en el Proyecto Archivos aparecen varios ejemplos de manipulación
de archivos planos, a cuya teoría nos remitimos.

• Close

Sintaxis: Close #NumeroCanal

• Funciones Input y LineInput

o Sintaxis: varString = Line Input #NumeroCanal

Esta instrucción lee una línea completa. La ventaja de esta función es que no incluye los
caracteres que se usaron como separador de líneas. Si se quieren leer más de una línea
hay que hacer un bucle o utilizar la siguiente función.

o Sintaxis: varString = Input(NumeroCaracteres, #NumeroCanal)

Esta instrucción lee del archivo (especificamos el puerto) la cantidad de caracteres
especificados. Tiene como inconveniente que contiene todos los caracteres incluidos los
Intro y retornos de carro si se han utilizado como separadores.

• Funciones Print y Write

o Sintaxis: Print #NumeroCanal, variable1, variable2, variable3, ...,variableN

Variable1, variable2, etc pueden ser variables, expresiones que dan un resultado
numérico o alfanumérico, o cadenas de caracteres entre dobles comillas.

o Sintaxis: Write #NumeroCanal, campo1, campo2, campo3, ..., campoN

Los ficheros escritos con Write tienen la ventaja de que agregan el indicador de retorno
de carro, cosa que no hace Print. A su vez son siempre visibles o leíbles con Input, cosa
que no ocurres siempre con Print.

3. Variables definidas por el usuario.

Es recomendable utilizar tipos de datos definidos por el usuario. Un tipo de datos definido
por el usuario es un conjunto de datos que se agrupan bajo un mismo nombre;
es decir, se trata de una estructura de datos, y actúan como una unidad.

¿Por qué? Simplemente porque nos interesa recuperar y guardar datos provenientes o dirigidos a
Bases de Datos y las bases de datos relacionales. Se necesitan registros y un tipo de estructura

 Unidad 4 Página 3 / 4

nos permite diseñar un registro básicamente. Es muy común que los tipos de datos definidos por
el usuario se utilicen en archivos de acceso aleatorio por cuanto se puede localizar un registro en
particular, sin embargo los utilizaremos en archivos planos, al menos por ahora.

Para definir un tipo de datos definido por el usuario se utiliza la instrucción Type que debe
emplearse en el área de declaraciones generales. Se debe por lo tanto conocer la estructura de la
base de datos, los tipos de datos con que se ha diseñado cada atributo de cada tabla y la longitud
de ser necesario como en el caso de las Strings. A continuación mostramos un ejemplo de cómo
se declara:

Private Type DatosCargos
IdCargo As Integer
NbreCargo As String * 12
MinSal As Single
MaxSal As Single
End Type

Se ha utilizado el tipo de datos Single, que permite decimales, para no utilizar Currency que
ocupa más memoria porque los datos a representar son monetarios pero no representan grandes
sumas de dinero ni exigen una gran precisión.

En las prácticas utilizaremos las funciones Input, Write, por ser las más flexibles para el manejo de datos de Bases de
Datos, juntamente con funciones definidas por el usuario.

Igualmente aprenderemos a hacer más amigable a la aplicación utilizando controles CommonDialog lo que nos permitirá
manejar los Cuadros de Diálogos Abrir Archivo y Guardar Como.

4. Tratamiento de Color e imágenes en Visual Basic. Representación hexadecimal de
los colores, acceso a los colores del sistema, función RGB, paleta de colores,
formatos gráficos, controles gráficos: Image, PictureBox, ImageList.

Para el tratamiento del color Visual Basic proporciona dos funciones: RGB y QBColor. RGB es el acrónimo
de Red, Green, Blue (rojo, verde, azul). QBColor es una herencia de Quick Basic, la antigua
plataforma de desarrollo Basic de Microsoft que se distribuía con MS Dos.

Con la función RGB, cuya sintaxis es: RGB(Red,Green,Blue), la gestión del color se realiza a través de la
combinación de los colores primarios Rojo, Verde y Azul. Cada componente (rojo, verde o azul) es
representado por un byte (8 dígitos == 0/255 (notación decimal) == 00/FF (notación hexadecimal). La
variación y combinación de estos colores nos permite tener una paleta de colores que parte por lo tanto

de la mezcla de los colores primarios y su intensidad.

Además, como ya se indicó, los colores se pueden representar en forma
hexadecimal. Sin embargo, Visual Basic no guarda sólo 3 bytes sino 4 bytes
(32 bits). El byte adicional es el que configura los colores del sistema.

Con la Función QBColor, que es más limitada que la anterior, ya que sólo
posee 16 colores predefinidos (combinaciones básicas). Su sintaxis es
QBColor(Color). El argumento Color puede variar entre 0 A 15.

En el proyecto Gráficos en el formulario Colores se presenta un ejemplo del
uso de colores tanto con la función RGB como con la función QBColor.

Formatos Gráficos
Visual Basic permite insertar imágenes y gráficos en las aplicaciones.
Pueden ser de tipo Bitmap como de tipo vectoriales. Los tipos de formatos
de ficheros gráficos que soporta son:

• de tipo bitmap:
� bmp
� ico

• de tipo vectorial:
� wmf (Windows Meta File)
� emf (Enhanced Meta File)
� jpg (JPEG o Joint Photographic Experts Group)
� gif (Graphic Interface Format)

 Unidad 4 Página 4 / 4

CONTROLES GRÁFICOS

Los controles gráficos que veremos sí son los siguientes: Image, PictureBox e ImageList. En el
proyecto Graficos hay ejemplos de uso de los siguientes controles.

Image

Permite mostrar imágenes de los formatos antes indicados. La propiedad esencial es Picture
porque da la posibilidad de especificar el tipo de gráfico. Asimismo son también importantes
BorderStyle,Stretch y ToolTipText.

Hay dos formas de asignar un gráfico a la aplicación, una es a través de la ventana Propiedades,
esto es

en tiempo de diseño es fácil pero no lo es tanto en tiempo de ejecución. En este caso debemos
utilizar la función LoadPicture. La sintaxis de esta función es: LoadPicture("Archivo.ext") y puede
incluirse o no la ruta de acceso del archivo.

En el proyecto Graficos en el formulario Graficos1 se presenta un ejemplo de este control donde
las imágenes se cargan con la función LoadPicture.

PictureBox

Es un control en apariencia muy parecido al anterior porque permite gestionar la misma variedad
de archivos gráficos. Se diferencia básicamente en que puede actuar como objeto contenedor de
objetos, como por ejemplo CommandButton y OptionButton. Sin embargo la diferencia más
notable está en que permite dibujar y por ello es un control muy útil para quienes desarrollan
aplicaciones de dibujo.

La propiedad esencial de este control también es Picture. También puede usarse la función
LoadPicture.

A diferencia del control anterior, presenta métodos que sirven para dibujar: Circle, Cls, Line y
Pset

ImageList

En los casos anteriores con la función LoadPicture podíamos cargar un gráfico en tiempo de
ejecución. Sin embargo estas son referencias explícitas y por ende debe existir el archivo gráfico
o bien debe estar correctamente especificada la ruta de acceso al archivo, de otro modo
tendremos por resultado un error.

Este control permite que las imágenes queden almacenadas en el formulario que las utilizará de
modo que siempre estén disponibles. Este control pertenece al componente Microsoft Windows
Common Controls 6.0 que si no está agregado al proyecto habrá que hacerlo.

En resumidas palabras ImageList almacena imágenes en un tamaño estándar y las subordina a
un módulo determinado. Visual Basic crea un archivo de extensión frx que forma parte del
formulario y se distribuye con él.

En el proyecto Graficos en el formulario Graficos3 se presenta un ejemplo completo de este
control.

Fuentes Bibliográficas consultadas:

• BIRNIOS, BALTAZAR, BIRNIOS, MARIANO, SMicorosft Visual Basic 6.0 Manual de Referencia

(MP Ediciones, Buenos Aires, 2000)

• RAMÍREZ R., José Felipe, aprenda VISUAL BASIC practicando (PrenticeAHall, México, 1ª
Edición, 2001)

